The Pythonic Way

Do you find that adding a little bit of formalism really helps crystallize the design
decisions around Python enhancements?

Guido: I think it became necessary as the community grew and I wasn’t necessarily able to judge every proposal on its value by itself. It has really been helpful for me to let other people argue over various details, and then come with relatively clear-cut conclusions.



Do they lead to a consensus where someone can ask you to weigh in on a single particular crystallized set of expectations and proposals?

Guido: Yes. It often works in a way where I initially give a PEP a thumb’s up in the sense that I say, “It looks like we have a problem here. Let’s see if someone figures out what the right solution is.” Often they come out with a bunch of clear conclusions on how the problem should be solved and also a bunch of open issues. Sometimes my gut feelings can help close the open issues. I’m very active in the PEP process when it’s an area that I’m excited about—if we had to add a new loop control statement, I wouldn’t want that to be designed by other people. Sometimes I stay relatively far away from it like database APIs.



What creates the need for a new major version?
Guido: It depends on your definition of major. In Python, we generally consider releases like 2.4, 2.5, and 2.6 “major” events, which only happen every 18–24 months. These are the only occasions where we can introduce new features. Long ago, releases were done at the whim of the developers (me, in particular). Early this decade, however, the users requested some predictability—they objected against features being added or changed in “minor” revisions (e.g., 1.5.2 added major features compared to 1.5.1), and they wished the major releases to be supported for a certain minimum amount of time (18 months). So now we have more or less time-based major releases: we plan the series of dates leading up to a major release (e.g., when alpha and beta versions and release candidates are issued) long in advance, based on things like release manager availability, and we urge the developers to get their changes in well in advance of the final release date.

Features selected for addition to releases are generally agreed upon by the core developers, after (sometimes long) discussions on the merits of the feature and its precise specification. This is the PEP process: Python Enhancement Proposal, a document-base process not unlike the IETF’s RFC process or the Java world’s JSR process, except that we aren’t quite as formal, as we have a much smaller community of developers. In case of prolonged disagreement (either on the merits of a feature or on specific details), I may end up breaking a tie; my tie-breaking algorithm is mostly intuitive, since by the time it is invoked, rational argument has long gone out of the window.

The most contentious discussions are typically about user-visible language features; library additions are usually easy (as they don’t harm users who don’t care), and internal improvements are not really considered features, although they are constrained by pretty stringent backward compatibility at the C API level.

Since the developers are typically the most vocal users, I can’t really tell whether features are proposed by users or by developers—in general, developers propose features based on needs they perceived among the users they know. If a user proposes a new feature, it is rarely a success, since without a thorough understanding of the implementation (and of language design and implementation in general) it is nearly impossible to properly propose a new feature. We like to ask users to explain their problems without having a specific solution in mind, and then the developers will propose solutions and discuss the merits of different alternatives with the users.

There’s also the concept of a radically major or breakthrough version, like 3.0. Historically, 1.0 was evolutionarily close to 0.9, and 2.0 was also a relatively small step from 1.6. From now on, with the much larger user base, such versions are rare indeed, and provide the only occasion for being truly incompatible with previous versions. Major versions are made backward compatible with previous major versions with a specific mechanism available for deprecating features slated for removal.


Source of Information : Oreilly - Masterminds of Programming

0 comments


Subscribe to Developer Techno ?
Enter your email address:

Delivered by FeedBurner